Scientific Papers
The impact and quality of Saildrone’s data has been featured in numerous scientific papers. Saildrone has demonstrated the highest possible levels of data quality, which has established scientific confidence in our measurements and sampling protocols. You can review some of the science publications below.
Uncrewed Ocean Gliders and Saildrones Support Hurricane Forecasting and Research
In the United States alone, hurricanes have been responsible for thousands of deaths and over US$1 trillion in damages since 1980 (https://www.ncdc.noaa.gov/billions/). These impacts are significantly greater globally, particularly in regions with limited hurricane early warning systems and where large portions of the population live at or near sea level. The high socioeconomic impacts of tropical cyclones will increase with a changing climate, rising sea level, and increasing coastal populations. To mitigate these impacts, efforts are underway to improve hurricane track and intensity forecasts, which drive storm surge models and evacuation orders and guide coastal preparations. Hurricane track forecasts have improved steadily over past decades, while intensity forecasts have lagged until recently (Cangialosi et al., 2020). Hurricane intensity changes are influenced by a combination of large-scale atmospheric circulation, internal storm dynamics, and air-sea interactions (Wadler et al., 2021, and references therein). Components of the sustained ocean observing system (e.g., profiling floats, expendable bathythermographs, drifters, moorings) are useful for understanding the role of the ocean in hurricane intensity changes. However, gaps in the ocean observing system, particularly collection of data near the air-sea interface and in coastal regions, boundary currents (e.g., the Gulf Stream, Kuroshio, among others), and areas with complex currents and seafloor topography (e.g., the Caribbean Sea), have led to difficulties in accurately representing upper ocean features and processes in numerical ocean models. Employment of uncrewed ocean observing platforms has begun to fill these gaps by offering rapid relocation and adaptive sampling of regions and ocean features of interest. These platforms include autonomous underwater gliders (Figure 1; Testor et al., 2019) and surface vehicles (Meinig et al., 2019). Uncrewed surface vehicles (USVs), such as saildrones and wave gliders, are systems designed for data collection in hazardous conditions. Data collected by these platforms have improved our understanding of upper ocean temperature and salinity stratification and mixing processes and are becoming critical in improving operational ocean and coupled air-sea hurricane forecast models (Domingues et al., 2021). This paper provides a broad overview of the ongoing US hurricane glider project and details of a new effort with the Saildrone USV during the 2021 hurricane season. While this article focuses on the US East Coast, Gulf of Mexico, and Caribbean Sea, similar efforts are underway in Korea, the Philippines, Japan, and China, among other countries.
Miles, T.N., D. Zhang, G.R. Foltz, J. Zhang, C. Meinig, F. Bringas, J. Triñanes, M. Le Hénaff, M.F. Aristizabal Vargas, S. Coakley, C.R. Edwards, D. Gong, R.E. Todd, M.J. Oliver, W.D. Wilson, K. Whilden, B. Kirkpatrick, P. Chardon-Maldonado, J.M. Morell, D. Hernandez, G. Kuska, C.D. Stienbarger, K. Bailey, C. Zhang, S.M. Glenn, and G.J. Goni. 2021. Uncrewed ocean gliders and saildrones support hurricane forecasting and research. Pp. 78–81 in Frontiers in Ocean Observing: Documenting Ecosystems, Understanding Environmental Changes, Forecasting Hazards. E.S. Kappel, S.K. Juniper, S. Seeyave, E. Smith, and M. Visbeck, eds, A Supplement to Oceanography 34(4), https://doi.org/10.5670/oceanog.2021.supplement.02-28.
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Suspendisse varius enim in eros elementum tristique. Duis cursus, mi quis viverra ornare, eros dolor interdum nulla, ut commodo diam libero vitae erat. Aenean faucibus nibh et justo cursus id rutrum lorem imperdiet. Nunc ut sem vitae risus tristique posuere.
Uncrewed surface vehicle (USV) survey of walleye pollock, Gadus chalcogrammus, in response to the cancellation of ship-based surveys
In 2020, the developing COVID-19 pandemic disrupted fisheries surveys to an unprecedented extent. Many surveys were cancelled, including those for walleye pollock (Gadus chalcogrammus) in the eastern Bering Sea (EBS), the largest fishery in the United States. To partially mitigate the loss of survey information, we deployed three uncrewed surface vehicles (USVs) equipped with echosounders to extend the ship-based acoustic-trawl time series of pollock abundance. Trawling was not possible from USVs, so an empirical relationship between pollock backscatter and biomass established from previous surveys was developed to convert USV backscatter observations into pollock abundance. The EBS is well suited for this approach since pollock dominate midwater fishes in the survey area. Acoustic data from the USVs were combined with historical surveys to provide a consistent fishery-independent index in 2020. This application demonstrates the unique capabilities of USVs and how they could be rapidly deployed to collect information on pollock abundance and distribution when a ship-based survey was not feasible. We note the limitations of this approach (e.g. higher uncertainty relative to previous ship-based surveys), but found the USV survey to be useful in informing the stock assessment in a situation where ship-based surveys were not possible.
Alex De Robertis, Mike Levine, Nathan Lauffenburger, Taina Honkalehto, James Ianelli, Cole C Monnahan, Rick Towler, Darin Jones, Sarah Stienessen, Denise McKelvey, Uncrewed surface vehicle (USV) survey of walleye pollock, Gadus chalcogrammus, in response to the cancellation of ship-based surveys, ICES Journal of Marine Science, 2021. https://doi.org/10.1093/icesjms/fsab155
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Suspendisse varius enim in eros elementum tristique. Duis cursus, mi quis viverra ornare, eros dolor interdum nulla, ut commodo diam libero vitae erat. Aenean faucibus nibh et justo cursus id rutrum lorem imperdiet. Nunc ut sem vitae risus tristique posuere.
Spatiotemporal Dynamics in the Acoustic Backscatter of Plankton and Lesser Sandeel (Ammodytes marinus) in the North Sea Measured Using a Saildrone
With accelerating global warming and human activities, the North Sea is one of the marine ecosystems undergoing rapid change. The need for spatially-temporally extendable survey platforms for assisting well-established vessel-based surveys are increasing. In this thesis, short-term variation in spatial structure of plankton and lesser sandeel (Ammodytes marinus) were investigated in the North Sea by using unmanned surface vehicle (USVs) Saildrones equipped with dual-frequency (38, 200 kHz) echo sounder. The data was collected in two areas, a part of the standard Aberdeen-Hanstholm transect and English Klondyke, an important sandeel fishing ground. These areas were repeatedly covered by two Saildrones in May-June 2019. Repeated surveys witnessed high plankton density in the western part of the Aberdeen-Hanstholm transect constantly during the survey period. Salinity seemed to be one possible factor explaining the heterogeneity of plankton density in both vertical and horizontal structure. Sandeel appeared diurnally at various depths from 2 m to near the sea bottom. There was only a weak tendency that the schools were distributed deeper around midday. However, their diverse vertical distribution indicated underlying drivers of their behavior other than light. Despite the existing uncertainty of species identification due to lack of ground-truthing and limited frequency availability, this saildrone survey conveyed little but purposeful information of the dynamics in spatial utilization of plankton and sandeel over a short period of time.
Komiyama, Sakura. "Spatiotemporal Dynamics in the Acoustic Backscatter of Plankton and Lesser Sandeel (Ammodytes marinus) in the North Sea Measured Using a Saildrone." Master's thesis, University of Bergen, 2021. Bergen Open Research Archive, https://hdl.handle.net/11250/2759844
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Suspendisse varius enim in eros elementum tristique. Duis cursus, mi quis viverra ornare, eros dolor interdum nulla, ut commodo diam libero vitae erat. Aenean faucibus nibh et justo cursus id rutrum lorem imperdiet. Nunc ut sem vitae risus tristique posuere.
Cold Pools Observed by Uncrewed Surface Vehicles in the Central and Eastern Tropical Pacific
New in situ observations collected by Saildrones, a novel uncrewed surface vehicle (USV), are used to investigate atmospheric cold pools during three 6-month missions to the central and eastern (∼140°W–125°W) tropical Pacific. Cold pool fronts in the atmospheric boundary layer are identified by a −1.5°C air temperature drop occurring in 10 min or less. While cold pool events were observed in the central Pacific as far north as 30°N and within the equatorial band, the majority of observed cold pools occurred within the convective, low-wind shear environment of the Intertropical Convergence Zone. Composite time series analysis of measurements during the 382 cold pool events reveals new insights on high-frequency variations in air temperature, wind speed, humidity, pressure, and sea surface temperature and salinity associated with cold pool fronts. The results highlight the unique capabilities of Saildrone USVs to resolve small spatial and temporal scales of variability over observationally sparse ocean regions.
Wills, S. M., Cronin, M. F., & Zhang, D. (2021). Cold pools observed by uncrewed surface vehicles in the central and eastern tropical Pacific. Geophysical Research Letters, 48, e2021GL093373. https://doi.org/10.1029/2021GL093373
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Suspendisse varius enim in eros elementum tristique. Duis cursus, mi quis viverra ornare, eros dolor interdum nulla, ut commodo diam libero vitae erat. Aenean faucibus nibh et justo cursus id rutrum lorem imperdiet. Nunc ut sem vitae risus tristique posuere.
Exploring the Pacific Arctic Seasonal Ice Zone With Saildrone USVs
More high-quality, in situ observations of essential marine variables are needed over the seasonal ice zone to better understand Arctic (or Antarctic) weather, climate, and ecosystems. To better assess the potential for arrays of uncrewed surface vehicles (USVs) to provide such observations, five wind-driven and solar-powered saildrones were sailed into the Chukchi and Beaufort Seas following the 2019 seasonal retreat of sea ice. They were equipped to observe the surface oceanic and atmospheric variables required to estimate air-sea fluxes of heat, momentum and carbon dioxide. Some of these variables were made available to weather forecast centers in real time. Our objective here is to analyze the effectiveness of existing remote ice navigation products and highlight the challenges and opportunities for improving remote ice navigation strategies with USVs. We examine the sources of navigational sea-ice distribution information based on post-mission tabulation of the sea-ice conditions encountered by the vehicles. The satellite-based ice-concentration analyses consulted during the mission exhibited large disagreements when the sea ice was retreating fastest (e.g., the 10% concentration contours differed between analyses by up to ∼175 km). Attempts to use saildrone observations to detect the ice edge revealed that in situ temperature and salinity measurements varied sufficiently in ice bands and open water that it is difficult to use these variables alone as a reliable ice-edge indicator. Devising robust strategies for remote ice zone navigation may depend on developing the capability to recognize sea ice and initiate navigational maneuvers with cameras and processing capability onboard the vehicles.
Chiodi Andrew M., Zhang Chidong, Cokelet Edward D., Yang Qiong, Mordy Calvin W., Gentemann Chelle L., Cross Jessica N., Lawrence-Slavas Noah, Meinig Christian, Steele Michael, Harrison Don E., Stabeno Phyllis J., Tabisola Heather M., Zhang Dongxiao, Burger Eugene F., O’Brien Kevin M., Wang Muyin, "Exploring the Pacific Arctic Seasonal Ice Zone With Saildrone USVs," Front. Mar. Sci., May 3, 2021. https://doi.org/10.3389/fmars.2021.640697
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Suspendisse varius enim in eros elementum tristique. Duis cursus, mi quis viverra ornare, eros dolor interdum nulla, ut commodo diam libero vitae erat. Aenean faucibus nibh et justo cursus id rutrum lorem imperdiet. Nunc ut sem vitae risus tristique posuere.
Measurements from the RV Ronald H. Brown and Related Platforms as part of the Atlantic Tradewind Ocean-Atmosphere Mesoscale Interaction Campaign (ATOMIC)
The Atlantic Tradewind Ocean-Atmosphere Mesoscale Interaction Campaign (ATOMIC) took place from 7 January to 11 July 2020 in the tropical North Atlantic between the eastern edge of Barbados and 51∘ W, the longitude of the Northwest Tropical Atlantic Station (NTAS) mooring. Measurements were made to gather information on shallow atmospheric convection, the effects of aerosols and clouds on the ocean surface energy budget, and mesoscale oceanic processes. Multiple platforms were deployed during ATOMIC including the NOAA RV Ronald H. Brown (RHB) (7 January to 13 February) and WP-3D Orion (P-3) aircraft (17 January to 10 February), the University of Colorado's Robust Autonomous Aerial Vehicle-Endurant Nimble (RAAVEN) uncrewed aerial system (UAS) (24 January to 15 February), NOAA- and NASA-sponsored Saildrones (12 January to 11 July), and Surface Velocity Program Salinity (SVPS) surface ocean drifters (23 January to 29 April). The RV Ronald H. Brown conducted in situ and remote sensing measurements of oceanic and atmospheric properties with an emphasis on mesoscale oceanic–atmospheric coupling and aerosol–cloud interactions. In addition, the ship served as a launching pad for Wave Gliders, Surface Wave Instrument Floats with Tracking (SWIFTs), and radiosondes. Details of measurements made from the RV Ronald H. Brown, ship-deployed assets, and other platforms closely coordinated with the ship during ATOMIC are provided here. These platforms include Saildrone 1064 and the RAAVEN UAS as well as the Barbados Cloud Observatory (BCO) and Barbados Atmospheric Chemistry Observatory (BACO). Inter-platform comparisons are presented to assess consistency in the data sets. Data sets from the RV Ronald H. Brown and deployed assets have been quality controlled and are publicly available at NOAA's National Centers for Environmental Information (NCEI) data archive (https://www.ncei.noaa.gov/archive/accession/ATOMIC-2020, last access: 2 April 2021). Point-of-contact information and links to individual data sets with digital object identifiers (DOIs) are provided herein.
Quinn, P. K., Thompson, E. J., Coffman, D. J., Baidar, S., Bariteau, L., Bates, T. S., Bigorre, S., Brewer, A., de Boer, G., de Szoeke, S. P., Drushka, K., Foltz, G. R., Intrieri, J., Iyer, S., Fairall, C. W., Gaston, C. J., Jansen, F., Johnson, J. E., Krüger, O. O., Marchbanks, R. D., Moran, K. P., Noone, D., Pezoa, S., Pincus, R., Plueddemann, A. J., Pöhlker, M. L., Pöschl, U., Quinones Melendez, E., Royer, H. M., Szczodrak, M., Thomson, J., Upchurch, L. M., Zhang, C., Zhang, D., and Zuidema, P.: Measurements from the RV Ronald H. Brown and related platforms as part of the Atlantic Tradewind Ocean-Atmosphere Mesoscale Interaction Campaign (ATOMIC), Earth Syst. Sci. Data, 13, 1759–1790, https://doi.org/10.5194/essd-13-1759-2021, 2021.
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Suspendisse varius enim in eros elementum tristique. Duis cursus, mi quis viverra ornare, eros dolor interdum nulla, ut commodo diam libero vitae erat. Aenean faucibus nibh et justo cursus id rutrum lorem imperdiet. Nunc ut sem vitae risus tristique posuere.
Formation and Evolution of a Freshwater Plume in the Northwestern Tropical Atlantic in February 2020
In February 2020, a 120-km-wide freshwater plume was documented by satellite and in situ observations near the Demerara Rise (7°N/54°W-56°W). It was initially stratified in the upper 10 m with a freshwater content of 2–3 m of Amazon water distributed down to 40 m. On February 2nd, ship transects indicate an inhomogeneous shelf structure with a propagating front in its midst, whereas minimum salinity close to 30 pss was observed close to the shelf break on February 5th. The salinity minimum eroded in time but was still observed 13–16 days later with 33.3 pss minimum value up to 400 km from the shelf break. At this time, the mixed layer depth was close to 20 m. The off-shelf flow lasted 10 days, contributing to a plume area extending over 100,000 km2 and associated with a 0.15 Sv (106 m3 s−1) freshwater transport. The off-shelf plume was steered northward by a North Brazil Current ring up to 12°N and then extended westward toward the Caribbean Sea. Its occurrence followed 3 days of favorable wind direction closer to the Amazon estuary, which contributed to north-westward freshwater transport on the shelf. Other such events of freshwater transport in January–March are documented since 2010 in salinity satellite products in 7 out of 10 years, and in 6 of those years, they were preceded by a change in wind direction between the Amazon estuary and the Guianas favoring the north-westward freshwater transport toward the shelf break.
Reverdin, G., Olivier, L., Foltz, G. R., Speich, S., Karstensen, J., Horstmann, J., et al. (2021). Formation and evolution of a freshwater plume in the northwestern tropical Atlantic in February 2020. Journal of Geophysical Research: Oceans, 126, e2020JC016981. https://doi.org/10.1029/2020JC016981
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Suspendisse varius enim in eros elementum tristique. Duis cursus, mi quis viverra ornare, eros dolor interdum nulla, ut commodo diam libero vitae erat. Aenean faucibus nibh et justo cursus id rutrum lorem imperdiet. Nunc ut sem vitae risus tristique posuere.
Constraining Southern Ocean CO2 Flux Uncertainty Using Uncrewed Surface Vehicle Observations
Remote, harsh conditions of the Southern Ocean challenge our ability to observe the region's influence on the climate system. Southern Ocean air‐sea CO2 flux estimates have significant uncertainty due to the reliance on limited ship‐dependent observations in combination with satellite‐based and interpolated data products. We utilize a new approach, making direct measurements of air‐sea CO2, wind speed, and surface ocean properties on an Uncrewed Surface Vehicle (USV). In 2019 the USV completed the first autonomous circumnavigation of Antarctica providing hourly CO2 flux estimates. Using this unique data set to constrain potential error in different measurements and propagate those through the CO2 flux calculation, we find that different wind speed products and sampling frequencies have the largest impact on CO2 flux estimates with biases that range from ‐4% to +20%. These biases and poorly‐constrained interannual variability could account for discrepancies between different approaches to estimating Southern Ocean CO2 uptake.
Sutton, A. J., Williams, N. L., & Tilbrook, B. (2021). Constraining Southern Ocean CO2 Flux Uncertainty Using Uncrewed Surface Vehicle Observations. Geophysical Research Letters, 48, e2020GL091748. https://doi.org/10.1029/2020GL091748
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Suspendisse varius enim in eros elementum tristique. Duis cursus, mi quis viverra ornare, eros dolor interdum nulla, ut commodo diam libero vitae erat. Aenean faucibus nibh et justo cursus id rutrum lorem imperdiet. Nunc ut sem vitae risus tristique posuere.
Autonomous Vehicle Surveys Indicate That Flow Reversals Retain Juvenile Fishes in a Highly Advective High‐Latitude Ecosystem
Summer surveys of the Chukchi Sea indicate that high densities of age‐0 gadid fishes, historically Arctic cod (Boreogadus saida) but recently also walleye pollock (Gadus chalcogrammus), dominate the pelagic fish community. Adults are comparatively scarce, suggesting that either overwinter survivorship of age‐0 gadids is low, or that they emigrate to other areas of the Pacific Arctic. To examine population movement, we conducted repeat acoustic surveys with saildrone autonomous surface vehicles equipped with echosounders throughout summer 2018. The saildrones' range and endurance enabled two large‐scale surveys of the U.S. Chukchi shelf. Acoustic backscatter, a proxy for fish density, was highest in regions with sea surface temperatures of 6–8°C, and lowest in areas influenced by recent ice melt. A subarea of the central Chukchi was surveyed a total of four times; backscatter in this subarea increased by > 85% from late‐July to mid‐September. As summer progressed, fish developed more extensive diel vertical migrations and backscatter from individuals doubled. Both changes suggest increases in backscatter were driven primarily by increasing body size. Particle tracking simulations indicated age‐0 gadids were likely retained over the Chukchi shelf by extended periods of wind‐driven southward flow during the survey period before strong northward flow in late fall transported them to the north. These findings suggest that in summer 2018, age‐0 gadids were advected northward to the Chukchi shelf from the northern Bering Sea, where they were retained during a period of growth until late fall before being advected farther north toward the Chukchi and Beaufort shelf breaks.
Levine, R.M., De Robertis, A., Grünbaum, D., Woodgate, R., Mordy, C.W., Mueter, F., Cokelet, E., Lawrence‐Slavas, N. and Tabisola, H. (2021), Autonomous vehicle surveys indicate that flow reversals retain juvenile fishes in a highly advective high‐latitude ecosystem. Limnol Oceanogr. https://doi.org/10.1002/lno.11671
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Suspendisse varius enim in eros elementum tristique. Duis cursus, mi quis viverra ornare, eros dolor interdum nulla, ut commodo diam libero vitae erat. Aenean faucibus nibh et justo cursus id rutrum lorem imperdiet. Nunc ut sem vitae risus tristique posuere.
Evaluation of Unmanned Surface Vehicle Acoustics for Gas Seep Detection In Shallow Coastal Waters
Understanding measurement, monitoring and verification (MM&V) needs in the environmental context of potential subsea carbon dioxide (CO2) storage projects (Carbon Capture and Storage [CCS]) is a challenging task globally. Unmanned surface vehicles (USV) equipped with acoustic sensors are an attractive option for detecting gas leaks due to their spatial and temporal coverage potential. Here, a SIMRAD Wide Band Transceiver Mini acoustic sensor is evaluated for detecting CO2 leaks in shallow coastal water (<20 m depth). Small flows of CO2 (0.34–3.90 tonnes CO2 gas yr−1) were released into the water column. The plumes were detected with the acoustic system with the results highlighting their dynamic nature. A survey simulation model showed that the probability of detecting a leak inside a 5 × 10 km survey area improved depending on the number of leaks within it, with 100 % detection probability for two leaks (>7.8 tonnes CO2 gas yr−1) achieved with a survey time of 600 h. As the number of leaks increased to 40 (> 156 tonnes CO2 gas yr−1) the survey duration reduced to ∼110 h for 100 % probability of detecting a plume. These detection flow rates are well below the upper limits proposed by IPCC (2005) for climate mitigation for a release of 1% in 1000 years for most proposed CO2 storage sites. Regulatory requirements for CCS sites are still evolving to address societal expectations and environmental monitoring needs. This work assists in determining detectable leak rate thresholds that can be detected in the marine environment using acoustic sensors.
Ben Scoulding, Rudy Kloser, Sven Gastauerb, "Evaluation of unmanned surface vehicle acoustics for gas seep detection in shallow coastal waters,” International Journal of Greenhouse Gas Control, Volume 102, November 2020. https://doi.org/10.1016/j.ijggc.2020.103158
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Suspendisse varius enim in eros elementum tristique. Duis cursus, mi quis viverra ornare, eros dolor interdum nulla, ut commodo diam libero vitae erat. Aenean faucibus nibh et justo cursus id rutrum lorem imperdiet. Nunc ut sem vitae risus tristique posuere.

Never Miss an Update
Stay informed with the latest research findings and updates.